Interpolation of GPS Results Incorporating Geophysical and InSAR Information

نویسندگان

  • Linlin Ge
  • Shaowei Han
  • Chris Rizos
چکیده

Continuous GPS networks, typically with a station spacing of about 30km, are still not dense enough to accurately characteristise the dynamics of active faults. Interpolation of these GPS results can improve our understanding of active faults and hence promote related studies. Moreover, even when the networks are densified in order to recover the signature of active faults, the station configuration design may not be ideal. Interpolation at these points, based on the GPS results from a well-designed station network, can provide a good quality control measure. As a first step in the interpolation process an irregular grid pattern is formed, based on the locations of the GPS stations, by using the indexed sorting algorithm. In order to interpolate objectively, the GPS stations and the intended interpolating points are classified into different sub-regions according to their positions in relation to the faults, which are expressed by openand closed-curve models. GPS results from stations in the same sub-region are used to derive a dynamic model for interpolation at grid points in the same sub-region. A deformation distribution model based on GPS and differential Synthetic Aperture Radar Interferometry (InSAR) results is used as constraints to scale the time series generated using the dynamic model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Double Interpolation and Double Prediction (didp) Approach for Insar and Gps Integration

The technique of synthetic aperture radar interferometry (or InSAR) was first suggested in 1974. Due to its characteristics of very high spatial resolution and wide coverage, as well as the cost effectiveness of the technique, it is not surprising that many earthquake ruptures have been studied using InSAR. However, InSAR is very sensitive to errors such as atmospheric effects, satellite orbit ...

متن کامل

SAR interferometry: Tropospheric corrections from GPS observations

Interferometric Synthetic Aperture Radar (InSAR) techniques have been recognised as an ideal tool for many ground deformation monitoring applications. However, the spatially and temporally variable delay of the radar signal propagating through the atmosphere is a major limitation to accuracy. The dominant factor to be considered is the tropospheric heterogeneity, which can lead to misinterpreta...

متن کامل

GPS Derived Tropospheric Delay Corrections to Radar Interferometry

Synthetic Aperture Radar Interferometry (InSAR) has been recognised as a well-suited tool for topographic mapping and ground deformation monitoring applications. However, the spatially and temporally variable tropospheric delay represents a major limitation to InSAR applications. On the other hand, it has become feasible to derive tropospheric corrections from continuous GPS for InSAR due to th...

متن کامل

Permanent Scatterer InSAR Analysis and Validation in the Gulf of Corinth

The Permanent Scatterers Interferometric SAR technique (PSInSAR) is a method that accurately estimates the near vertical terrain deformation rates, of the order of ∼1 mm year(-1), overcoming the physical and technical restrictions of classic InSAR. In this paper the method is strengthened by creating a robust processing chain, incorporating PSInSAR analysis together with algorithmic adaptations...

متن کامل

GPS-Derived Tropospheric Delay Corrections to Differential InSAR Results

Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques have been recognised as an ideal tool for many ground deformation monitoring applications. However, the spatially and temporally variable delay of the radar signal propagating through the atmosphere is a major limitation to accuracy. The dominant factor to be considered is the tropospheric heterogeneity, which can lead to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999